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1. INTRODUCTION

Let 7T, denote the set of polynomials of degree »n or less and let |j || be the
sup norm on Cia, b]. It is well known that

for each f'e Cla, b] there exists a unique p, € /7,
which satisfies || f — p/ | < | f—p!| Vpeli,. (.1

For fixed #u, p; is called the polynomial of best approximation to f. One of the
basic theorems strengthening this result is the Strong Unicity Theorem which

guarantees the existence of a positive constant y depending only on f for
which the inequality

Wf—pllZIf—pell+viip—prll holdsVpell,. (1.2}

See, for example, Cheney [1, pp. 80-81]. We say in this case that p, is
strongly unique.

In the theory of monotone approximation the set of approximating
elements 77, is replaced by the set M, = {pell, | p(x) > 0 VYx e g, b]}.
Lorentz and Zeller [4] have shown that (1.1) holds if we replace I1,, by A,
{ ps is then called the monotone polynomial of best approximation). Our
main result is an example which shows that (1.2) need not hold with 77,
replaced by M, and p; replaced by the best approximation to f from Af,, .

Let fe Cla, b] and let p,e M, be the monotone polynomial of best
approximation to f. We define the two sets of “extreme points” in [a, 5]

A = {x|1fx) —p)] = I/ — p:l} (1.

a2

3
;

* Research supported in part by NSF Grant MCS 76-04033.
19
0021-9045/79/090019-15302.00/C

Copyright © 1979 by Academic Press, Inc.
All rights of reproduction in any form reserved.



20 FLETCHER AND ROULIER

and
B = {x | pi(x) = 0}. (1.4)

Also define o(x) = [f(x) — pD).f — psll for f¢ M, . Lorentz and Zeller
[4] prove the following:

LemMA 1.1.  p; is the monotone polynomial of best approximation to f from
M, if and only if there exist points

X; EA, l — l, 2,..., 122
and

J/'jEB, J = 1, 2,...,A

and corresponding numbers «; >0, i = 1,2,.,pand B; >0, =1,2,., A
such that w + A < n+ 2 and

73

Y. oo(xy) p(x;) + Z Bip'(y) = (1.5

i=l
forallpell,.

Moreover, if we let e denote the number of the y; which are equal to ¢ or b,
the proof of Theorem 9 of [4] gives

p+2A—e=n-2 (1.6)

The following theorem follows from the above result, but has a direct
proof and is due to Roulier [6].

LemMAa 1.2. If p; is the best approximation to f from M, and if B = &
(i.e., p{(x) > 0 on [a, b]) then in fact p; is the best approximation to f from I1,
on [a, b].

These two results together with the results on Birkhoff interpolation used
in [4] will be our chief tools in the remaining sections.

The study of strong unicity and Lipschitz constants in settings other than
the classical one have been studied in [3] for shrinking intervals and in {2]
and [8] for changing dimension.

The last two sections obtain modified strong unicity and continuity results
for the best monotone approximation.
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2. A COUNTEREXAMPLE

Example of a function whose monotone polynomial of best approximation

is not strongly unigue. Let

Fl) = i —e i (x— 3%)3, ce[—1,1]

Craiv 1. The best monotone approximation to f out of Il, on [—1, 1} is
PAXY = (x — 1/3177).
Proof. For the proof of this claim we appeal to Lemma 1.1. We see that

A= 1X\ |f(x) “’pf(X)‘ == nf“Pr“} = {‘—I,G, i‘“

, 1
B~ {x1pi) = 0} = |35,

o =IP =P, xed s oo =1

a0) =1, and o(l) = —1.

The fact that
(2 — 33 [a(—=1) p(—D] + 4[o(0) p(0)] + (2 + 323)[a(1) p(1}]

. YN |
2032 p (gm) —0
holds for all p € I, allows us to invoke Lemma 1.1 which establishes the
claim. In order to verify (2.1), simply observe that it is valid for p(x) = 1,
plx) = x, p(x) = x2, and p(x) = x5
Now fix « €(0, 1) and define:

1 . . \
Pfx) = (x - 3—1—2) 4+ ax(x? — (1 — o))

13,2 ~ = i
= (1 + o) x> — 312 +(1~H~X>X~37§Tz-

Then p/(x) = 3(1 4 o) x* — 2(3)*2x - (I — o -+ a?). The discriminant of
plis 12— 12[(0 + &)(1 — a + o®)] = —12a% < 0. Therefore p, does not
change sign and since p(0) > 0 we have p(x) >0, xs[—1,1]. Thus,
P.€E M.

Crant IL | p. — ps 1l = R332 1 — )*7 for o sufficiently smail.

Proof. Note that [ p, — psl(x) = ax® — {1 — x)x. It is a simple exercise
to show that for o sufficiently small | p(x) — p(x)| = | p. — p; |l a1 x =
—{(1 — «)/3)'/2, and that || p, — p; || = 2of3(32}(1 — «)®7? in this case.
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Cram 1L | f— pull = % + o

Proof. Observethat |[f—pJ()) = | —%+ o« — o2 — | = § + o Thus
we must show that

If=pd) <t + 0% xe[-L1] 22)

So, suppose | x | << 1. Then we have,

X1+ x) <4 2.3)
and
(1 —x)1 —x <4 (X))

From (2.3) we obtain x*(1 — x)*(1 + x)? < 41 — x)*(1 + x). Thus
(x —x*)? — 41 — x)(1 — x?) <0, and the quadratic in o (1 — x)o®+
(x — x¥)a + (I — x?) does not change sign (and thus is nonnegative). That
is, 0 << a? — o2x ++ ax — ax® + 1 — x2 which gives

—1 — o < =22 4 (x — o — xo 2.5)

From (2.4) we obtain (1 + x)(I — x)? << 4. Thus x*(1 + x)¥(1 — x)* <
41 + x) x2, and (x — x¥)2 — 4(1 + x) x?2 < 0. Hence, the quadratic in «,
(1 4+ x) a® — (x — x®)a -+ x2 does not change sign (and is thus nonnegative.)
That is, 0 << o + o®x — ax 4+ ax® 4 x% which gives

x4 (x — XF)a — xa? < ol (2.6)

It now follows from (2.5) and (2.6) that —1 — o? < —x% + (x — X% —
xa? < o Hence, —% — o2 <3 — 224+ (x — x¥)a — xa? < § + o2 and so
ILf — pJ(x) < %+ o2 We now combine Claims I, II, and III to find that
for 0 < a < I and « sufficiently small,

W —pl—If—pll  Ltar—} 3@
i =p 2 W e U A
EC

Hence we can make the above expression as small as desired by taking «
sufficiently small. This clearly shows the impossibility of obtaining a
“strong unicity” constant for f.

3. STrRONG UNICITY FOR SOME CASES

In this section we show that the monotone polynomial of best approxi-
mation is strongly unique if it’s degree is less than or equal to two.
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TueoreMm 3.1, If p; is the best approximation from M, to f on [a, b) and
if the degree of py is 0, 1, or 2 then p; is strongly unique.
This shows that the counterexample in the previous section could not have
been of lower degree.
LemMma 3.1. If pe M, and {x}¢,C A are as in Lemma 1.1 and if
Py — p € M, and max ¢, o(x;) p(x;) <0, then p = 0.

Proof. Suppose p;—pe M, and max;qc, o(x)p(x;) <0. Then
i1 2o(x) p(x;) < 0 (since «; > 0), and we conclude from (1.5) that
Z:-=1 B;p'(y;) = 0. But pye M, implies that p{y;) =0, j == 1,.., A, and
piy;y =0fora <y; < b Thus p'(y;) <0,/ = 1,., A and (1.5) gives

plx) =0, i=l..,pm (3.0
pP(y) =0, j=1.,A (3.2)

Therefore [p; — pl(y;) =0, j = 1,..,A. But p, —pe M, implies that
fp; — pl'(y;) = 0ifa < y; < b. Thus

p'(y) =0 for a<y <bh (3.3

Hence, (3.1), (3.2), and (3.3) furnish the data for a Birkhoff interpolation
problem. Now, (1.6) and the techniques in [4] prove the lemma.

LemMa 3.2, If A =1,y = a(or b), and if { pi}7_, satisfies

peell,, G4

}(‘j}} pe=pell,  uniformiy on {a, b}, (2.5
Py) <0 for k=12,., (.6}
lim sup (max ofx,) pu(x.)) <O (3.7

then p = Q.

Proof. Lemma 1.1 gives constants

o; >0, i=1l.,p aod 3, >0
for which

o

z az0(x;) p(x;) -+ Iglpi(h) =0

i=1

forallpell,.
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Thus for each & = 1, 2,... we have
Y wo(xg) pulxs) = —Bupi(y) = 0.

i=1

Moreover, since p; — p' uniformly on [a, b] also, we have p'(y;) < 0.
Thus, as above, we have

Z aa(xg) plx;) = 0. (3.3
i=1

On the other hand, it follows from (3.5) and (3.7) that
;oax, ofx:) px) < 0. (3.9)

It now follows from (3.8) and (3.9) and the fact that o; > 0 for i =1,
2,..., b, that o(x;) p(x;) =0 for i =1,2,.., p. But ofx;) = +1 for i =
1,..., p. Hence,

Blx) =0 for i=1,2,.,pu (3.10)
Now, it follows from (1.5) and the fact that A = 1 and y, is an endpoint,

that,
w=n-+l 3.11)

Hence, it follows from (3.10) and (3.11) that p has at least n + 1 zeros.
Thus, the proof of Lemma 3.2 is complete.
Define, :
0 =gl =B o —peiy.lpl #0f. G
LEMMA 3.3. IfA = L,and y, = a(or b) then inf,., max, <<, o(x;) g(x;) =
y > 0.

Proof. Assume that the lemma is false. Then there is a sequence
{g.}_1 C Q such that

lim sup max o(x;) g:(x;) < 0.

Since, |! ¢ || = 1 for £ = 1, 2,..., we may assume without loss of generality
that lim;,., ¢, = q € I1, and the convergence is uniform. Moreover, [[ g|| = 1
and

[max o(x;) g(x;) < 0.
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On the other hand

P )
lpell — ol '

gy =
By Lemma 3.2 then, we see that ¢ = 0. But this contradicts || g | = 1. Thus,
Lemma 3.3 is proven.
Proof of Theorem 3.1. The proof considers three cases:

Case 1. pfx) > 0 on [a, b]. In this case Lemma 1.2 shows that p, is the
ordinary best approximation to f from I7,, . Thus strong unicity follows from
the classical strong unicity theorems.

Case 2. pfx) = 0 on [a, b]. Define Q as in (3.12). We see that if g€ ¢
then

Q/Pf(‘f)
70 =T < T =

Now assume that

inf max o(x;) g(x)) <

Then there is a sequence {q,}s_; , g, € @ for m = 1, 2...., such that
lim sup max o(x;) g.{x;) < 0.
B0 I<istp

Since {g,}n_; has a convergent subsequence we may without loss of generality
assume lim,,_, g, = § uniformly on {a, b]. Now || il = 1 and

12?%‘“ o(x;) §(x;) <0
Moreover, since g,(x) < 0 on [a, b] for all n we have

§(x) <0 on [a. 5],

implying that p, — §e M, . Thus Lemma 3.1 gives § = 0, a contradiction.
Hence.

IIEI(I) max, o{x) g(x) =7 >0

To show strong unicity now let pe M, , p = p;, and define

pAx) — p(x)
9(x) = e —pl
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Then g€ Q and
[Iax o(xy) q(x;) = >0

with = independent of p.
Choose x* € 4 such that

a(x*) q(x*) = 1.

Now,

If =Pl = o(x™)(f(x*) — p(x*))
= o(x*)(f(x*) — pA(x®)) + o(x¥)pAx*) — p(x*))
= |l f—psll + o(x*) ) 1 pr — P ||
I f—pill+7llps —pl-

This completes the proof for Case 2.

Case 3. Either pa) = 0 or pyb) = 0.
We assume without loss of generality that pga) = 0. In this case
Lemma 3.3 applies. Thus if Q is defined as in the previous case we have
55 /2, 0 46 =7 = 0.
The remainder of the proof now proceeds as in the last part of the previous
case. |

4. MODIFIED STRONG UNICITY

In this section we present two theorems which show that strong uniqueness
results of a modified nature are possible for all #n. The first result gives (1.2)
for all » but only for all p satisfying 0 < p'(x) < p/x) on [a, b]. The second
result holds true for all p € M, but || p — p;ilin (1.2) is replaced by || p — p;Il',
where || - ||’ is a certain seminorm.

TueoreM 4.1. Let fe Cla, b] and let p; be the monotone polynomial of
best approximation to f on [a, b]. Then there is a number v > 0 such that

If=pll Z I f—pl +7llpr—pl

Jfor all p for which both pe M, and p'(y;) = 0 for j = 1,..., A. (This includes
the case pe M, and p, —pe M, .)
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Proof. Consider the set @, = {g | q(x) = p(x){llp!l, where p'(y) =G,
j=1l,..,Aand p; — pe M, , and where p # 0}.
We will show that
inf max o(x) g(x) = + > 0, (4.0

qeQy Xx€A

where o is as defined in Section 1. To see this, assume that (4.1} is false.
Then there exist g,, € O, , m = 1, 2,..., such that

liI}'nl sup max a(x) g,.{x) < 0.

Moreover, we may without loss of generality assume that there is ¢ such that

fim am = ¢
uniformly on {a, b]. Now,
gell,
and so by (1.5) we have
“ A
; o;0(xs) q(x;) + El Bid' (yp) = 0. 4.2y

Furthermore, we have

g(ys) =0 for j=1,2,., X
and (4.3}

gn(¥) =0 for each y; € (a, b).
Thus, g must also satisfy

g(y) =0 for j=12.,A
and
q"(y;) =0 for all y; e{a, b).
This, the fact that o(x) ¢(x) < 0 for all x in 4, and (4.2) show that
qg(x) =0 for i=1,.,u. {4.4)
Hence, by the same method as that used in the proof of Lemma 3.1 we have

g=20.Butlig,| =1 form=1,2,.. . Hence, {|g| = 1. This is a contra-
diction. This proves (4.1). Theorem 4.1 now follows easily as we wiil show.
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0 for j=1,..,A Let r(x) =

Let pell, satisfy pe M, and p'(y;) =
p(x). If p £ p; then || r || 54 0 and

pi(x) — p(:
_ Hx)
q(x) | 2 “ Ql
Now, by (4.1)
max a(x)g(x) =7 > 0.

Choose X € 4 such that
o(X) g(X) = 7
—pl

Then,
— (X)) = 7l py

o(X)(pAX)

Now observe that,

If—plt = o(XUf(X) —
= If = prll + o(Z)pAX)

THEOREM 4.2. Let the hypotheses be those of Theorem 4.1. Then there is

PAX)) + o(X)(pAX) — p(X))

(X)) = o(X)(f(X) —
NWf—pill+7llpr—rpl 1

—p(X) =

a number p > 0 such that

f—rl =

If—pill+pllps—pI

for all p e M, , where
Il = max (g0l | (3D
1Si<h
and where x; ,i = 1,...,pandy;,j = A are as in Lemma 1.1.

Proof. For pell, define
Ipl = 112;2(“ (I p(x)l | P'(P))-

1<i<A
Il 'l is easily seen to be a seminorm. Now define

g1q() = ”( ,’ where || p | + 0, and p, —

PEM,

O(u, A =

We claim that,
max O-(YZ) q(\z) =P > 0.

inf
aEQ(u,/\) Iisp
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To see this, assume that there are

dm € Q(,u, A)a m =1 Z,...,

such that

s,
..L.\.)
h

g

lim sup max o(x;) gn(x;) < 0.
I<isu

Hi—>%

Also, since p, — pe M, ,
quly) <0 for j=1,.,A
Furthermore, it follows from (1.5) and this last expression, that
[max o(x;) gm(x;) = 0.
Thus, with {(4.5), we have

im max, o(x) gnlxi) = 0.

But then by (1.5) and the fact that ¢,,(y;) < Oforj = 1,..., A we have
lim ¢,(y;) =0  for j=1,.,A

Thus again by (1.5) we get lim,,_, o(x;) g {x;) = O for 7 = 1,..., x. Since
o{x;) = 41 for i = l,.., u, and || - || is a continuous seminorm on I7,
we have

’!nlsf}c H qm h, = 0.

But for each m, | g,, |/ = 1. This is a contradiction. Thus, the claim is proved.
The remainder of the proof proceeds as in the last part of the proof of
Theorem 4.1. |}

5. CONTINUITY OF THE OPERATOR T(f} = p;

It is well known that the strong unicity theorem in the classical case
implies a local Lipschitz condition for the best approximation operator.
This, of course, implies the continuity of this operator. See Cheney {1, p. 82].

In this section, we will obtain a modified Lipschitz condition for the best
monotone approximation operator and then use this to conclude that this
operator is continuous.

For each fin C[a, b, as above, let p, denote the best approximation to f
from M, .
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THEOREM 5.1. Let fe Cla, b]. There exists a positive number K such that
Jor all g € Cla, b)

lpr —polll < K| f—gl. .0

| I is as defined in Theorem 4.2, and we may take K = 2/p, where p is the
constant obtained in Theorem 4.2.

Proof. The proof proceeds exactly as in the classical case [1, p. 82]. Since
the proof is short, we reproduce it here. Observe that by Theorem 4.2

oy —pl < %(Hf—p = 1f = pe D) 5.2)

foranype M, .
Thus if p = p, for some g € C[a, b] we have from (5.2)

s — poll’ < %(llf—pg =1~ 2, D)
< :—)(Hf*gH I P
< %(Hf— gl +lg — ol —1f = ps )
< %(llf— gl + g — Il +1f = ol — I1f — 2y )
2
<ZIf—gl |

The second theorem can now be proved. The proof depends on (5.1) and
the theory of Birkhoff interpolation.

THEOREM 5.2. The operator T(f) = p; is continuous on Cla, b].

Proof. 1t suffices to show that if fe Cla, b] and if { g,,}5_, is a sequence
of elements of Cla, b] satisfying lim,,..., &, = f uniformly on [a, b]. Then
limy,.e T(gn) = T(f) uniformly on [g, b]. Consider such a sequence

{gm}1°:L=1 "
It follows immediately from (5.1) that

lim || 7(f) — T(gm)l" = O. (5.3)
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Furthermore,

Sl gnll+iignll <+ 21A

for m sufficiently large. Thus, {T( g,)}_1 is bounded. Now assume that
lim,, .« 7(gn) 7 T(f). Then there is ¢, > 0 and a subsequence {7Y Em N
such that

il T(gmk) — TN = ¢ (3.4

k =1, 2,.... Furthermore {TY( gq,,k)},'if;1 is bounded. Hence, this sequence
has a subsequence which converges. We may assume without loss of generality
that the sequence itself converges to g€ M, .

We will now show that ¢ = T(f), and thus reach a contradiction to the
above assumption.

Define p, = T(g,,) and p; = T(f). It follows from (5.3) that

ll{l_gnlpk(xz) = psxy). P=1l..p
and
Um pi(y) = pAy), = L., A

On the other hand, since lim,_,., p, = g we have

q(x;) = pAxy) for i=1..p 5.5

and
q'(y)) =ply) for j=1..,4 (5.8
Moreover, since both ¢'(x) = 0 on [a, b] and p(x) > 0 on [z, b] we have

T
!

th

q’(y) = piyy forall y e{a b (

Seend

Now by (i.6) the total number of conditions in (5.5), (5.6), and (5.7} is
no less than # + 2. Thus, it follows as in [4] that the Birkhoff interpolation
problem described by (5.5), (5.6), and (5.7) has a unique solution. Hence,

q = ps = T(f).
This is the desired contradiction, and Theorem 5.2, is proved. §

640fz27/1-3
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6. REMARKS

We note here that in the counterexample in Section 2 the polynomials
P«(x) do not satisfy

Pax) < py(x).
In fact,

1) = 2(2 — 3% << 22 — 313) - 22 + o = p(1).
Hence, as expected no p, satisfies the hypotheses of Theorem 4.1.

On the other hand, to see how this example fits into the setting of
Theorem 4.2 we observe that

| pr — pull” = | pA(1) — pu(D] = | po(1/3*7)| = o2
and

“fﬁ—pzxu——”.f_pr:f:I fOl’all 06>0.

e )

1 pr — pail «

The fact that strong unicity fails to hold for monotone approximation is
somewhat surprising. On the other hand, the failure of classical theorems
to hold for modified cases is not unusual and in fact an example is shown
in Roulier and Taylor [7] which establishes that the polynomial of best
approximation from a class of polynomials with restricted ranges of the first
derivative need not in general be unique.

It would be interesting to investigate the other constrained approximation
theories from this point of view. That is, for which problems does strong
unicity hold.-

The question of whether or not the best monotone approximation operator
satisfies a local Lipschitz condition remains open at this point.
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